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surfaces and free energies of activation. Dauber & 
Hagler (1980) used crystal structures to parametrize 
the 'non-bonded' interactions or packing, nuclear 
repulsion and hydrogen bonding. Potentials or closely 
related probability distributions have been deter- 
mined from databases also for packing calculations 
as a function of residue pairs (Singh & Thornton, 
1990; Narayana & Argos, 1984; Gregoret & Cohen, 
1990; Ponder & Richards, 1987) and for hydrogen 
bonding (Baker & Hubbard, 1984; Taylor & Kennard, 
1984; Ippolito, Alexander & Christianson, 1990). 
Many other applications have also been published 
which testify to the growing recognition of the wealth 
and variety of information available from structural 
databases. 
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Abstract 

The maximum-entropy method of image reconstruc- 
tion is discussed in the context of the crystallographic 
phase problem. Entropy is the function to be maxim- 

ized in a space of phases which has dimension equal 
to the number of structure-factor constraints. The 
function J [ 1 - e x p  (-P/Po)] dV is proposed as a 
suitable one. An analogy between the phase problem 
and the spin-glass problem of condensed-matter 
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physics is discussed. This analogy has instigated a 
study of the geometry of the entropy surface in the 
space of unknown phases for a simple model and 
preliminary results are presented. 

1. Introduction 

The maximum-entropy method (Gull & Daniell, 
1978) which has been studied for some time in other 
fields has recently attracted some interest in the con- 
text of the crystallographic phase problem (Narayan 
& Nityananda, 1981, 1982; Narayan, Nityananda & 
Vani 1983; Collins, 1982). 

The technique involves the maximization of the 
'entropy' 

S = ~ f [ p ( r ) ] d V  (1) 

with respect to the unknown phases for fixed values 
of the structure amplitudes 

IFHI = I(1/V) J p(x, y, z) exp [ - i ( h x  

+ky+ lz)] dx dy dz{. 
f is some suitable real function of p(r). 

It has been shown (Narayan, Nityananda & Vani, 
1983) that by maximizing the 'entropy' with respect 
to the unknown phases we obtain 

aS/a¢H=(2/V)IFHIIGHI sin (~n- -0H)=0 ,  

where 

GH = IGHI exp (/OH) ---- i f ' [  p(r)] exp (2 71ill. r) d V. 

We can write the vanishing of the gradient as 

~0 H = O H or ~ H  = OH "l- 71. (2) 

Using this property of the maximum-entropy solution 
we introduce in § 2 a maximum-entropy interpreta- 
tion to direct methods. It has been noted (Narayan 
et al., 1983) that when none of the phases are available 
the final map depends on the initial map and on the 
algorithm used. In § 3 we discuss the similarity 
between the problem in hand and the spin-glass prob- 
lem. What these problems have in common is frustra- 
tion which leads to a rich structure of extrema. In § 4 
we perform a numerical analysis of the solution space 
in order to understand this behaviour. Finally, in § 5 
we give the results of the analysis and summarize our 
conclusions. 

2. What happens when 'entropy' is maximized 

Two widely discussed proposals for the form of f in 
(1) are 

(i) f ( p ) = l n ( p )  

(ii) f ( p ) = - p l n ( p ) ,  

where the arguments in favour of one or other form 
are based on combinatorial and/or  probabilistic con- 
siderations. 

In this paper we adopt the viewpoint that the 
maximum-entropy method is a variational technique 
of obtaining an electron-density map that agrees 
simultaneously with the observed amplitudes and 
with the physical constraints based on a priori knowl- 
edge of the characteristics of the density function. 
These physical constraints include positivity and ato- 
micity, i.e. the density map has a flat baseline with 
peaks and takes positive values everywhere. 

With this view, the conventional direct-methods 
approach to the phase problem can also be interpreted 
in the maximum-entropy framework as briefly 
explained below. [See also Bricogne (1984) for a 
somewhat different viewpoint.] 

Cochran (1952) proposed that maximization of ~ p3 
discriminates against negative electron density and 
encourages the formation of positive peaks. 

Here f ( p )  = p3 and f ( p )  = 3p:. 
Sayre (1952) observed that when the physical con- 

straints on the density function are satisfied and the 
atoms are approximately equal and well resolved then 
the electron density is roughly proportional to its 
square, i.e. p = kp:, which implies that the phase of 
p is like the phase of p2. Thus the true map satisfies 
the maximization condition (2) for the function ~ p3 
in the equal-atom case. Now, 

j p 3 d V = V E Z FH,-H2 F-H, Fttz 
HI H2 

X COS ((pH _H2"~- ~t)_H, + (~H2). 

Maximization of ~ p3 involves satisfying the triplet 
relationships ~0n,-H2 + ~0-H, + ~On: = 0. 

We call the system frustrated if ~0H,_H2+~0_H,+ 
~0H~ ~ 0 for some HI, H2. The global maximum arises 
whenever ~ , - H 2 +  ~0-H, + ~On~ = 0 for all H , ,  H2. The 
unfrustrated solution corresponds to the global 
maximum which will be ~0H=0 for all H, i.e. the 
modulus map. However, this is not our desired sol- 
ution. Hence in order to arrive at the desired solution 
we make compromises by letting certain triplets 
remain unsatisfied. In general, it is not straightfor- 
ward to establish which could be the best com- 
promise, although several generations of rather suc- 
cessful direct-methods programs have emerged. 

In the direct-methods approach [see Ladd & 
Palmer (1980) for a complete review] to the problem, 
the constraint ~ p3= maximum is used to derive the 
tangent formula 

tan 9 8 , -  

,Y_., FH:FH,-H: sin (~'H~+ q~t,-H:) 
H2 

Z FH~FH,-H~ cos (~0H2+ ~OH,-H2) 
H2 
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To begin with, phase relat ionships are set up which 
become terms in the tangent  formula.  The strong 
reflections are selected and phases assigned to either 
a small  number  of them or to all reflections. New 
phases are determined and the complete set of  phases 
refined using the tangent formula.  Certain figures of  
merit are used to detect a correct solution and stop 
phase determinat ion at that point. 

However, the advantage of  tackling the problem 
variat ional ly is that one can think in real space. Also, 
one could think of  suitable functions other than pa 
whose maximiza t ion  incorporates higher-order  
invariants  like quartets which are believed to be more 
powerful than just triplets. 

The reason we have not in this work considered 
the customary functions ~ log (p)  and j " - p  l o g ( p )  is 
that, for a general set of  phases,  p takes negative 
values and,  as in Narayan  et al. (1983), a constant  
should be added  to p to make it positive. Hence, the 
function being maximized  keeps varying. This is not 
suitable for our present purposes.  

In this context we propose to examine  another  
function, S=~[1-exp ( -p /po ) ]dV ,  where po is a 
value close to the baseline.  

The motivat ion beh ind  this function is as follows. 
Like p3, the function 'punishes '  negative values of  p. 
Unlike p3, the funct ion does not ' reward '  peaks once 
they grow much  larger than the baseline. The par- 
ameter  Po controls the ' reward and pun ishment '  as 
expla ined later. 

Here 
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Fig. 1. (a) The true one-dimensional image consisting of five 
unequal peaks. The horizontal line indicates the value Po. (b) 
Plot of (1/po) exp (-P/Po) versus x, showing that it is also a 
structure with five atoms, the atoms here are negative, have a 
different shape and are all nearly equal. 

f (p) = 1 - e x p  (-P/Po) 

i f(p) = (1/po) exp (-P/Po). 

On the true map,  where p has fiat basel ine and peaks, 
i f ( p )  has troughs corresponding to the peaks and 
flattened peaks corresponding to the basel ine (Fig. 
1). The condi t ion (2) is satisfied (strictly only for 
equal  and well resolved atoms) and hence the true 
map is a solution to the max imum-en t ropy  equations.  

For any wrong map  which will have peaks in the 
wrong posit ion and negative excursions of  p, the 
corresponding i f ( p )  will have peaks corresponding 
to negative p and the r ippled basel ine of p manifests  
as ripples in i f ( p )  as shown in Fig. 2. 

Now, maximiza t ion  of  j" [ 1 - -  exp ( - p / p 0 ) ]  d V will 
involve shift ing the phases so as to iron out the 
negative ripples in p. In the process the peaks in p 
are also expected to shift to the right positions. 

The Taylor-series expans ion  of  the funct ion 
1-exp (-p/po) is 

1 - e x p  (-P/Po)= P/Po--p2/2!P~ + p3/3!P 3 

--p4/4!p~WpS/5!p~)--.... 

When po takes high values compared to the p 's  of  
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Fig. 2. (a) Image obtained by introducing a phase error to the 
map in Fig. 1 (a). There are peaks in wrong positions and negative 
excursions of p. (b) The corresponding plot of (1/po)× 
exp (-P/Po) showing ripples corresponding to negative p in (a). 
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interest, we could approximate the function by 

I - e x p  (-p/Po) = P~ Po- P2/2! P~ 
+ p 3 / 3 ! p 3 - p 4 / 4 ! p ~ .  

Now, ~/9 and j" p2 are phase independent being given 
by Fooo and (1/V)~_,[Fhkt[ 2. Maximization of 

1 - e x p  ( -P / /9o )  would be equivalent to maximiz- 
ation of /9 3 in  the lowest approximation (for large 
/90). For smaller values of/90 other invariants enter as 
well. Hence, the value of/90 determines the extent to 
which the phases interact. In this way it plays a similar 
role to the additive constant C in Narayan et al. 
(1983). 

Also since in the Taylor expansion of the function 
the cubic and quartic terms have different signs we 
could expect a conflict between invariant relation- 
ships of different orders. 

3. A spin-glass connection? 

This problem in the form just described bears some 
resemblance to the well known spin-glass problem of 
condensed-matter physics which involves the 
minimization of the Hamiltonian ~ = Y~i>j Josisj with 
respect to s~. (See the review by Mezard, Parisi & 
Virasoro, 1988.) 

Here s~ is a spin on each of the N sites, all coupled 
through a random symmetric matrix with elements Jo 
that are statistically independent and Gaussian dis- 
tributed. 

. ~ = 0  and J ~ = I / N .  

Owing to the randomness of the J0, it is not possible 
to satisfy all th~ interactions at once, which results 
in frustration in the system. Analytical work and 
numerical experiments have shown the existence of 
many metastable states which can be arranged in a 
hierarchical manner based on the 'distances' between 
them (Rammal, Toulouse & Virasoro, 1986). 

In the crystallographic phase problem, the interac- 
tions refer to the invariant relationships entered into 
by phases. It is not possible to satisfy all the interac- 
tions at once except for the trivial case when the 
phase CH = 0 for all H. Failure to satisfy any of these 
relationships results in frustration. As a consequence, 
one can think of more than one solution to this 
problem. 

Hence, both problems aim at finding the extrema 
in the presence of conflicting requirements. 

4. Numerical analysis 

The similarity with spin glasses just mentioned has 
instigated a numerical analysis of the 'entropy'  land- 
scape in a simple model. The analysis was done by 
means of the tabu search (Amaldi & Nicolis, 1989), 
described below. 

We consider a one-dimensional centrosymmetric 
structure p ( x )  that extends over the range -½ <-x-< ½. 
We assume that the data consist of the Fourier ampli- 
tudes FH, H = 0, 1 , . . . ,  32. Fig. 3 shows the function 
when phases are given the true values. 

The function being centrosymmetric and the origin 
fixed at a centre of symmetry, the phases take discrete 
values 0 or rr. 

Tabu search 

The method identifies a maximum and moves on 
to neighbouring maxima by flips of the phase vari- 
ables. By flipping the phase ¢H, one means changing 
its value to ¢H + qT. 

For the example under consideration, there are 232 
possible solutions. Let the initial phase configuration 
be ¢ = ( ¢ 1 ,  ¢ 2 , . . . ,  ¢ ~ , . . . ,  ¢32). We now flip one 
phase at a time and calculate the corresponding S 
( 'entropy')  values; i.e. to phase flip ¢h -* Cn + ¢r corre- 
sponds a new S value, S h. S h = entropy corresponding 
to the configuration (~0~, ¢2, • • •, Ch + ~', • • •, ¢32). 

We then accept that flip ¢k ~ Ck + 7r which takes 
us to the largest new value of S, which could be lower 
than the current value. 

S, ew= S k = m a x  ( S 1, $ 2 , . . . ,  sk ,  . . . , S" ) .  

This procedure is followed at every stage. 
Since there exist only a finite number of different 

configurations in solution space, the system will inevi- 
tably get locked into a cyclic mode. In order to avoid 
visiting the same configuration too soon, i.e. to 
increase the length of the period, the flip that has 
been accepted is entered into a tabu list and is not 
considered for the next L steps. The tabu list is 
updated at every stage. 

However, this scheme also allows a tabooed phase 
flip to be considered if it would lead us to better 
regions of search. To this end, an aspiration function 
A is defined on the set of S values as follows. 

At every step A ( S )  will be the largest value of S 
encountered so far. Recall that Snew is the largest 
value of S corresponding to one of the allowed phase 
flips. 

-05 -03  -01 0Jl 0~3 0 
X 

Fig. 3. The one-dimensional image on which the tabu search 
analysis was done. 
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If S,,w < Sprevious and if there exists a phase flip 
tpk ~ tpk + ~ which is tabooed and for which Sk>  
A(S) ,  then the taboo status of ~0k is overridden and 
the flip ~Ok ~ ~Ok + 7r is accepted. 

This scheme is ideally suited for our purpose as it 
gives us a good picture of the way our entropy func- 
tion varies over the solution space. One should, 
however, note that the tabu search is basically a 
heuristic approach and there is as yet no proof that 
it visits all maxima of interest or finds the optimal 
route between them. 

5. Results and discussion 

The tabu search was carried out for the two different 
'entropy' functions 

(i) S = j p 3 d V  

(ii) S = I [1 - e x p  ( -p /po)]  d V 

and the entropy landscape, i.e. entropy variations as 
one moves along the tabu path, is shown in Figs. 4 
and 5. 

The true structure is seen to be at a local maximum 
with a wide basin of attraction, i.e. a wide range of 
initial guesses from which to reach the solution. This 
suggests the general suitability of the cost functions 
examined. 

However, the landscape for both functions presents 
multiple maxima where the local maxima could rep- 
resent solutions at which some of the phase relation- 

o 

2 

STEP 

MODULUS MAP TRUE MAP 

ENTROPY LANDSCAPE 

Fig. 4. Plot of f p3 in the space of unknown phases showing the 
rugged landscape. 
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Fig. 5. Plot of f [ 1 - e x p ( - p / p o ) ] d V  in the space of unknown 
phases showing the presence of multiple maxima. 

ships are satisfied. In real space they appear to rep- 
resent maps in which fragments of the structure can 
be identified. Narayan et al. (1983) noted that multiple 
copies of a fragment can be recognized at a local 
maximum. 

In order to look at the geometry of the space of 
solutions we define a permissible route between two 
solutions as one connected by single phase-flip 
passages. The natural notion of distance between two 
solutions a and b is defined as 

d ( a , b ) =  max {min(S)}. 
(path a--* b ) 

It is not yet possible to comment on whether such a 
distance would order the solutions on a hierarchical 
generating tree for any 'entropy' function. 

Considering the complexity of the landscape for 
such a simple one-dimensional structure, one could 
expect a truly complicated situation in more realistic 
structures. Hence the problem posed, i.e. maximize 
the entropy with respect to unknown phases, is a 
challenging one. Conventional numerical techniques 
are likely to get stuck at a false maximum. However, 
some of the false maxima are useful as they give 
fragments of the structure and combining other crys- 
tallographic methods it may be possible to pull out 
the complete structure from this partial information. 

Work is in progress to devise numerical algorithms 
which will take us to useful maxima. The parallel 
with the spin-glass problem proposed in this paper 
may prove a useful guide in importing ideas and 
techniques from an entire class of very well studied 
problems. 
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